Search results for "Peptide Chain Elongation"

showing 4 items of 4 documents

A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation

2012

Translational read-through-inducing drugs (TRIDs) promote read-through of nonsense mutations, placing them in the spotlight of current gene-based therapeutic research. Here, we compare for the first time the relative efficacies of new-generation aminoglycosides NB30, NB54 and the chemical compound PTC124 on retinal toxicity and read-through efficacy of a nonsense mutation in the USH1C gene, which encodes the scaffold protein harmonin. This mutation causes the human Usher syndrome, the most common form of inherited deaf-blindness. We quantify read-through efficacy of the TRIDs in cell culture and show the restoration of harmonin function. We do not observe significant differences in the read…

MaleRetinal DisorderUsher syndromemedia_common.quotation_subjectNonsenseNonsense mutationPeptide Chain Elongation TranslationalCell Cycle ProteinsIn Vitro TechniquesBiologyPharmacologymedicine.disease_causeRetinaCell LineMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRetinal DiseasesIn vivoretinitis pigmentosaRetinitis pigmentosaotorhinolaryngologic diseasesmedicineAnimalsHumansResearch ArticlesAdaptor Proteins Signal Transducingpharmacogenetics030304 developmental biologymedia_commonOxadiazoles0303 health sciencesMutationsensoneuronal degenerationRetinalmedicine.diseasedrug therapy3. Good healthMice Inbred C57BLCytoskeletal ProteinsAminoglycosideschemistryCodon NonsenseMolecular MedicineFemaleUsher syndrome030217 neurology & neurosurgeryEMBO Molecular Medicine
researchProduct

Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives.

2015

Abstract Premature stop codons are the result of nonsense mutations occurring within the coding sequence of a gene. These mutations lead to the synthesis of a truncated protein and are responsible for several genetic diseases. A potential pharmacological approach to treat these diseases is to promote the translational readthrough of premature stop codons by small molecules aiming to restore the full-length protein. The compound PTC124 (Ataluren) was reported to promote the readthrough of the premature UGA stop codon, although its activity was questioned. The potential interaction of PTC124 with mutated mRNA was recently suggested by molecular dynamics (MD) studies highlighting the importanc…

Cystic FibrosisNonsense mutationPeptide Chain Elongation TranslationalCystic Fibrosis Transmembrane Conductance RegulatorSettore BIO/11 - Biologia MolecolareMolecular Dynamics SimulationCFTR genechemistry.chemical_compoundStructure-Activity RelationshipPlasmidDrug DiscoveryTumor Cells CulturedCoding regionHumansGreen fluorescent proteinGenePharmacologyGeneticsMessenger RNAOxadiazolesNonsense mutationDose-Response Relationship DrugMolecular StructureDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryTranslational readthroughSettore CHIM/06 - Chimica OrganicaGeneral MedicinePTCs readthroughStop codonAtalurenSettore BIO/18 - GeneticachemistrySettore CHIM/03 - Chimica Generale E InorganicaCodon NonsenseCystic fibrosiMutationFluorinated oxadiazoleHeLa CellsEuropean journal of medicinal chemistry
researchProduct

Fertility and Polarized Cell Growth Depends on eIF5A for Translation of Polyproline-Rich Formins in Saccharomyces cerevisiae

2014

eIF5A is an essential and evolutionary conserved translation elongation factor, which has recently been proposed to be required for the translation of proteins with consecutive prolines. The binding of eIF5A to ribosomes occurs upon its activation by hypusination, a modification that requires spermidine, an essential factor for mammalian fertility that also promotes yeast mating. We show that in response to pheromone, hypusinated eIF5A is required for shmoo formation, localization of polarisome components, induction of cell fusion proteins, and actin assembly in yeast. We also show that eIF5A is required for the translation of Bni1, a proline-rich formin involved in polarized growth during …

TranslationSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaePeptide Chain Elongation TranslationalForminsRNA-binding proteinSaccharomyces cerevisiaeInvestigationsPeptide Initiation FactorsMorphogenesisGeneticsQc-SNARE ProteinsPolyproline helixPolarisomeGeneticsMatingbiologyMicrofilament ProteinsMembrane ProteinsRNA-Binding ProteinsTranslation (biology)Polarized growthbiology.organism_classificationActinsProtein Structure TertiaryCell biologyCytoskeletal ProteinsMating of yeastForminsMutationbiology.proteinEIF5APeptidesRibosomesEIF5A
researchProduct

eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences

2017

Abstract eIF5A is an essential protein involved in protein synthesis, cell proliferation and animal development. High eIF5A expression is observed in many tumor types and has been linked to cancer metastasis. Recent studies have shown that eIF5A facilitates the translation elongation of stretches of consecutive prolines. Activated eIF5A binds to the empty E-site of stalled ribosomes, where it is thought to interact with the peptidyl-tRNA situated at the P-site. Here, we report a genome-wide analysis of ribosome stalling in Saccharomyces cerevisiae eIF5A depleted cells using 5Pseq. We confirm that, in the absence of eIF5A, ribosomes stall at proline stretches, and extend previous studies by …

0301 basic medicinePeptidyl transferaseProlineCytoskeleton organizationAmino Acid MotifsSaccharomyces cerevisiaePeptide Chain Elongation TranslationalSaccharomyces cerevisiaeBioinformaticsRibosomeGTP Phosphohydrolases03 medical and health sciences0302 clinical medicinePeptide Initiation FactorsGene Expression Regulation FungalGeneticsProtein biosynthesisHumansMolecular BiologyPolyproline helixBinding SitesbiologyRNA-Binding Proteinsbiology.organism_classificationStop codonCell biology030104 developmental biologybiology.proteinGenome FungalHydrophobic and Hydrophilic InteractionsRibosomesEIF5A030217 neurology & neurosurgeryProtein BindingNucleic Acids Research
researchProduct